Chimeric dengue 2 PDK-53/West Nile NY99 viruses retain the phenotypic attenuation markers of the candidate PDK-53 vaccine virus and protect mice against lethal challenge with West Nile virus.
نویسندگان
چکیده
Chimeric dengue serotype 2/West Nile (D2/WN) viruses expressing prM-E of WN NY99 virus in the genetic background of wild-type D2 16681 virus and two candidate D2 PDK-53 vaccine variants (PDK53-E and PDK53-V) were engineered. The viability of the D2/WN viruses required incorporation of the WN virus-specific signal sequence for prM. Introduction of two mutations at M-58 and E-191 in the chimeric cDNA clones further improved the viability of the chimeras constructed in all three D2 carriers. Two D2/WN chimeras (D2/WN-E2 and -V2) engineered in the backbone of the PDK53-E and -V viruses retained all of the PDK-53 vaccine characteristic phenotypic markers of attenuation and were immunogenic in mice and protected mice from a high-dose 10(7) PFU challenge with wild-type WN NY99 virus. This report further supports application of the genetic background of the D2 PDK-53 virus as a carrier for development of live-attenuated, chimeric flavivirus vaccines in general and the development of a chimeric D2/WN vaccine virus against WN disease in particular.
منابع مشابه
Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development.
Attenuation markers of the candidate dengue 2 (D2) PDK-53 vaccine virus are encoded by mutations that reside outside of the structural gene region of the genome. We engineered nine dengue virus chimeras containing the premembrane (prM) and envelope (E) genes of wild-type D1 16007, D3 16562, or D4 1036 virus within the genetic backgrounds of wild-type D2 16681 virus and the two genetic variants ...
متن کاملAttenuation markers of a candidate dengue type 2 vaccine virus, strain 16681 (PDK-53), are defined by mutations in the 5' noncoding region and nonstructural proteins 1 and 3.
The genome of a candidate dengue type 2 (DEN-2) vaccine virus, strain PDK-53, differs from its DEN-2 16681 parent by nine nucleotides. Using infectious cDNA clones, we constructed 18 recombinant 16681/PDK-53 viruses to analyze four 16681-to-PDK-53 mutations, including 5' noncoding region (5'NC)-57 C-to-T, premembrane (prM)-29 Asp-to-Val (the only mutation that occurs in the structural proteins)...
متن کاملInfection with Non-Lethal West Nile Virus Eg101 Strain Induces Immunity that Protects Mice against the Lethal West Nile Virus NY99 Strain
Herein we demonstrate that infection of mice with West Nile virus (WNV) Eg101 provides protective immunity against lethal challenge with WNV NY99. Our data demonstrated that WNV Eg101 is largely non-virulent in adult mice when compared to WNV NY99. By day 6 after infection, WNV-specific IgM and IgG antibodies, and neutralizing antibodies were detected in the serum of all WNV Eg101 infected mice...
متن کاملChimeric West Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and monkeys for safety and immunogenicity.
A live attenuated virus vaccine is being developed to protect against West Nile virus (WN) disease in humans. Previously, it was found that chimeric West Nile/dengue viruses (WN/DEN4 and WN/DEN4Delta30) bearing the membrane precursor and envelope protein genes of WN on a backbone of dengue type 4 virus (DEN4) with or without a deletion of 30 nucleotides (Delta30) in the 3' noncoding region of t...
متن کاملMolecular analysis of dengue virus attenuation after serial passage in primary dog kidney cells.
The complete nucleotide sequences of the genomes of dengue-1 virus virulent 45AZ5 PDK-O and attenuated vaccine candidate strain 45AZ5 PDK-27 have been determined and compared with the dengue-1 virus Western Pacific (West Pac) 74 parent strain from which 45AZ5 PDK-O was derived. Twenty-five (0.23%) nucleotide and 10 (0.29%) amino acid substitutions occurred between parent strain dengue-1 virus W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 79 12 شماره
صفحات -
تاریخ انتشار 2005